Toric Residue Mirror Conjecture for Calabi-yau Complete Intersections

نویسنده

  • KALLE KARU
چکیده

The toric residue mirror conjecture of Batyrev and Materov [2] for Calabi-Yau hypersurfaces in Gorenstein toric Fano varieties expresses a toric residue as a power series whose coefficients are certain integrals over moduli spaces. This conjecture was proved independently by Szenes and Vergne [10] and Borisov [5]. We build on the work of these authors to generalize the residue mirror map to not necessarily reflexive polytopes. Using this generalization we prove the toric residue mirror conjecture for Calabi-Yau complete intersections in Gorenstein toric Fano varieties [3]. We start by introducing notation and explaining the main idea of the generalization. We work over the filed K = Q. Let M ≃ Z, let ∆ ⊂ MK be a d-dimensional lattice polytope, and let T be a coherent triangulation of ∆, defined by a convex piecewise linear integral function on ∆. All lattice points in ∆ are assumed to be vertices of the simplices in T . We place ∆ in MK = (M × Z)K as ∆× {1} and let C∆ ⊂ MK be the cone over ∆ with vertex 0. Then T defines a subdivision of C∆ into a fan Σ. The idea of the toric residue mirror conjecture is to relate the semigroup ring S∆ = K[C∆ ∩ M ] to the cohomology of the fan Σ. Let I∆ ⊂ S∆ be the ideal generated by monomials t where m ∈ M lies in the interior of C∆. Given general elements f0, . . . , fd ∈ S ∆ (the superscript denotes the degree), we can construct the toric residue map [9]: Res(f0,...,fd) : (I∆/(f0, . . . , fd)I∆) d+1 ∼ → K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties

We propose a combinatorical duality for lattice polyhedra which conjecturally gives rise to the pairs of mirror symmetric families of Calabi-Yau complete intersections in toric Fano varieties with Gorenstein singularities. Our construction is a generalization of the polar duality proposed by Batyrev for the case of hypersurfaces.

متن کامل

Vertex Algebras and Mirror Symmetry

Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish th...

متن کامل

A pr 2 00 3 LIMITING BEHAVIOR OF LOCAL CALABI - YAU METRICS DUKE - CGTP - 03 - 02 ILIA ZHARKOV

We use a generalization of the Gibbons-Hawking ansatz to study the behavior of certain non-compact Calabi-Yau manifolds in the large complex structure limit. This analysis provides an intermediate step toward proving the metric collapse conjecture for toric hypersurfaces and complete intersections.

متن کامل

Limiting Behavior of Local Calabi-yau Metrics

We use a generalization of the Gibbons-Hawking ansatz to study the behavior of certain non-compact Calabi-Yau manifolds in the large complex structure limit. This analysis provides an intermediate step toward proving the metric collapse conjecture for toric hypersurfaces and complete intersections.

متن کامل

Mirror Symmetry Constructions: A Review

We review various constructions of mirror symmetry in terms of Landau-Ginzburg orbifolds for arbitrary central charge c and Calabi-Yau hypersurfaces and complete intersections in toric varieties. In particular it is shown how the different techniques are related. To appear in Essays on Mirror Manifolds II

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003